Зарядное устройство для автомобильного аккумулятора своими руками. Универсальное зарядное устройство для малогабаритных аккумуляторов Зарядка для малогабаритных аккумуляторов

30.08.2023 Шины и диски

Источники питания

Н. ГЕРЦЕН, г. Березники Пермской обл.
Радио, 2000 год, №7

На питании малогабаритной аппаратуры от гальванических элементов и батарей при сегодняшних ценах можно буквально разориться. Выгоднее, потратясь один раз, перейти на использование аккумуляторов. Для того чтобы они служили долго, их необходимо правильно эксплуатировать: не разряжать ниже допустимого напряжения, заряжать стабильным током, вовремя прекращать зарядку. Но если за выполнением первого из этих условий приходится следить самому пользователю, то выполнение двух остальных желательно возложить на зарядное устройство. Именно такое устройство и описывается в статье.

При разработке ставилась задача сконструировать устройство, обладающее следующими характеристиками:

Широкими интервалами изменения зарядного тока и напряжения автоматического прекращения зарядки (АПЗ). обеспечивающими зарядку как отдельных аккумуляторов, применяемых для питания малогабаритной аппаратуры, так и составленных из них батарей при минимальном числе механических переключателей;
- близкими к равномерным шкалами регуляторов, позволяющими с приемлемой точностью устанавливать зарядный ток и напряжение АПЗ без каких-либо измерительных приборов;
- высокой стабильностью зарядного тока при изменении сопротивления нагрузки;
- относительной простотой и хорошей повторяемостью.

Описываемое зарядное устройство полностью отвечает этим требованиям. Оно предназначено для зарядки аккумуляторов Д-0.03. Д-0.06. Д-0.125. Д-0.26. Д-0.55. ЦНК-0,45. НКГЦ-1.8. их импортных аналогов и батарей, составленных из них. До выставленного порога включения системы АПЗ аккумулятор заряжается стабилизированным током, не зависящим от типа и числа элементов, при этом напряжение на нем по мере зарядки постепенно растет. После срабатывания системы на аккумуляторе стабильно поддерживается выставленное ранее постоянное напряжение, а зарядный ток уменьшается. Иными словами, перезарядки и разрядки аккумулятора не происходит, и он может оставаться подключенным к устройству длительное время.

Устройство можно использовать в качестве блока питания малогабаритной аппаратуры с регулируемым напряжением от 1,5 до 13 В и защитой от перегрузки и короткого замыкания в нагрузке.

Основные технические характеристики устройства следующие:

Зарядный ток на пределе "40 мА" - 0...40, на пределе "200 мА" - 40...200 мА;
- нестабильность зарядного тока при изменении сопротивления нагрузки от 0 до 40 Ом - 2.5 %;
- пределы регулирования напряжения срабатывания АПЗ - 1,45... 13 В.

Схема зарядного устройства

В качестве стабилизатора зарядного тока применен источник тока на транзисторе \Л"4. В зависимости от положения переключателя SA2 ток в нагрузке Iн определяется соотношениями: I Н = (U Б - U БЭ)/R10 и I Н = (U Б - U БЭ)/(R9 + R10), где U Б - напряжение на базе транзистора VT4 относительно плюсовой шины, В; U БЭ - падение напряжения на его эмиттерном переходе, В; R9, R10 - сопротивления соответствующих резисторов, Ом.

Из этих выражений следует, что. изменяя напряжение на базе транзистора VT4 переменным резистором R8. можно регулировать ток нагрузки в широких пределах. Напряжение на этом резисторе поддерживается неизменным стабилитроном VD6, ток через который, в свою очередь, стабилизирован полевым транзистором VT2. Все это и обеспечивает нестабильность зарядного тока, указанную в технических характеристиках. Применение источника стабильного тока, управляемого напряжением, позволило изменять зарядный ток вплоть до весьма малых значений, иметь близкую к равномерной шкалу регулятора тока (R8) и достаточно просто переключать пределы его регулирования.

Система АПЗ. срабатывающая после достижения предельно допустимого напряжения на аккумуляторе или батарее, включает в себя компаратор на ОУ DA1, электронный ключ на транзисторе VT3, стабилитрон VD5. стабилизатор тока на транзисторе VT1 и резисторах R1 - R4. Индикатором зарядки и ее окончания служит светодиод HL1.

При подключении к устройству разряженного аккумулятора напряжение на нем и неинвертирующем входе ОУ DA1 меньше образцового на инвертирующем, которое установлено переменным резистором R3. По этой причине напряжение на выходе ОУ близко к напряжению общего провода, транзистор VT3 открыт, через аккумулятор течет стабильный ток, значение которого определяется положениями движка переменного резистора R8 и переключателя SA2.

По мере зарядки аккумулятора напряжение на инвертирующем входе ОУ DA1 возрастает. Повышается напряжение и на его выходе, поэтому транзистор VT2 выходит из режима стабилизации тока, VT3 постепенно закрывается и его коллекторный ток уменьшается. Процесс продолжается до тех пор. пока стабилитрон VD6 не перестает стабилизировать напряжение на резисторах R7, R8. С понижением этого напряжения транзистор VT4 начинает закрываться и зарядный ток быстро уменьшается. Его конечное значение определяется суммой тока саморазрядки аккумулятора и тока, текущего через резистор R11. Иными словами, с этого момента на заряженном аккумуляторе поддерживается напряжение, установленное резистором R3, а через аккумулятор течет ток, необходимый для поддержания этого напряжения.

Светодиод HL1 индицирует включение устройства в сеть и две фазы процесса зарядки. При отсутствии аккумулятора на резисторе R11 устанавливается напряжение, определяемое положением движка переменного резистора R3. Для поддержания этого напряжения требуется весьма незначительный ток, поэтому HL1 светится очень слабо. В момент подключения аккумулятора яркость его свечения возрастает до максимальной, а после срабатывания системы АПЗ по окончании зарядки - скачкообразно уменьшается до средней между названными выше. При желании можно ограничиться двумя уровнями свечения (слабое, сильное), для чего достаточно подобрать резистор R6.

Детали устройства смонтированы на печатной плате, чертеж которой показан на рис. 2. Она выполнена методом прорезания фольги и рассчитана на установку постоянных резисторов МЛТ, подстроечного (проволочного) ППЗ-43. конденсаторов К52-1Б (С1) и KM (С2). Транзистор VT4 установлен на теплоотводе с эффективной площадью теплового рассеяния 100 см 2 . Переменные резисторы R3 и R8 (ППЗ-11 группы А) закреплены на передней панели устройства и снабжены шкалами с соответствующими отметками.

Переключатели SA1 и SA2 - любого типа, желательно, однако, чтобы контакты используемого в качестве SA2 были рассчитаны на коммутацию тока не менее 200 мА.

Сетевой трансформатор Т1 должен обеспечивать на вторичной обмотке переменное напряжение 20 В при токе нагрузки 250 мА.

Полевые транзисторы КПЗОЗВ можно заменить на КПЗОЗГ - КПЗОЗИ, биполярные КТ361В - на транзисторы серий КТ361. КТ3107, КТ502 с любым буквенным индексом (кроме А), а КТ814Б - на КТ814В. КТ814Г. КТ816В. КТ816Г. Стабилитрон Д813 (VD5) необходимо подобрать с напряжением стабилизации не менее 12.5 В. Вместо него допустимо использовать Д814Д или любые два соединенных последовательно маломощных стабилитрона с суммарным напряжением стабилизации 12.5... 13.5 В. Возможна замена ППЗ-11 (R3. R8) переменными резисторами любого типа группы А, а ППЗ-43 (R10) - подстроенным резистором любого типа с мощностью рассеяния не менее 3 Вт.

Налаживание устройства начинают с подбора яркости свечения светодиода HL1. Для этого переводят переключатели SA1 и SA2 соответственно в положения "13 В" и "40 мА". а движок переменного резистора R8 - в среднее, подключают к гнездам XS1 и XS2 резистор сопротивлением 50... 100 Ом и находят такое положение движка резистора R3. в котором изменяется яркость свечения HL1. Увеличения различия в яркости свечения добиваются подбором резистора R6.

Затем устанавливают границы интервалов регулирования зарядного тока и напряжения АПЗ. Подключив к выходу устройства миллиамперметр с пределом измерения 200...300 мА. переводят движок резистора R8 в нижнее (по схеме) положение, а переключатель SA2 - в положение "200 мА". Изменением сопротивления подстроечного резистора R10 добиваются отклонения стрелки прибора до отметки 200 мА. Затем перемещают движок R8 в верхнее положение и подбором резистора R7 добиваются показаний 36...38 мА. Наконец, переключают SA2 о положение "40 мА". возвращают движок переменного резистора R8 в нижнее положение и подбором R9 устанавливают выходной ток в пределах 43...45 мА.

Для подгонки границ интервала регулирования напряжения АПЗ переключатель SA1 устанавливают в положение "13 В", а к выходу устройства подключают вольтметр постоянного тока с пределом измерения 15...20 В. Подбором резисторов R1 и R4 добиваются показаний 4,5 и 13 В в крайних положениях движка резистора R3. После этого, переведя SA1 в положение "4,5 В", в тех же положениях движка R3 устанавливают стрелку прибора на отметки 1.45 и 4,5 В подбором резистора R2.

В процессе эксплуатации напряжение АПЗ устанавливают из расчета 1,4... 1,45 В на один заряжаемый аккумулятор.

Если устройство не предполагается использовать для питания радиоаппаратуры, индикацию окончания зарядки погасанием светодиода можно заменить его миганием, для чего достаточно ввести в компаратор гистерезис -дополнить устройство резисторами R12, R13 (рис. 3). а резистор R6 удалить. После такой доработки при достижении установленного значения напряжения АПЗ светодиод HL1 погаснет, а зарядный ток через аккумулятор полностью прекратится. В результате напряжение на нем начнет падать, поэтому вновь включится стабилизатор тока и загорится светодиод HL1. Иными словами, при достижении установленного напряжения HL1 начнет мигать, что иногда более наглядно, чем некая средняя яркость свечения. Характер процесса зарядки аккумулятора в обоих случаях остается неизменным.

Андрей Барышев, г. Выборг

В данной статье описывается изготовление несложного устройства, предназначенного для безопасной зарядки любых малогабаритных аккумуляторов. Под «безопасностью» здесь подразумевается возможность ручной установки зарядного тока, рекомендованного для каждого конкретного типа аккумулятора, а также автоматическое снижение выходного тока до нулевого значения после того, как аккумулятор зарядится полностью, до своего номинального напряжения. Такое зарядное устройство (ЗУ), конечно, не может служить полноценной заменой «фирменному» ЗУ, которое разрабатывается под конкретный тип аккумулятора и обеспечивает оптимальный режим его заряда. Но его удобно иметь под рукой, если вам часто приходится пользоваться различными типами аккумуляторов, а специальных «зарядок» к этим аккумуляторам нет. ЗУ позволяет заряжать аккумуляторы разных типов, с номинальным напряжением, начиная от 1.2 В («таблетки», «пальчиковые»), батареи сотовых телефонов различных моделей (напряжением 3.7…4.5 В), а также 9 и 12-вольтовые аккумуляторы. Зарядный ток может быть до 500 мА и выше, это зависит только от мощности примененных в схеме элементов.

Принцип работы

Как правило, рекомендуемый изготовителем зарядный ток аккумулятора составляет 1/10 от номинальной паспортной емкости С А, которая измеряется в А/ч (ампер/час) и указывается на его корпусе. То есть, например, для аккумулятора емкостью 700 мА/ч оптимальным будет ток заряда 70 мА. Поскольку ток в процессе зарядки будет уменьшаться, его первоначальное значение можно задать немного выше рекомендованного для того, чтобы ускорить процесс зарядки (если это необходимо). Но делать это следует в умеренных пределах, чтобы не допустить сильного нагрева аккумулятора. Максимальное значение начального зарядного тока рекомендуется устанавливать не более (0.2 - 0.3)С А.

В предлагаемой схеме предусмотрена ручная установка значения этого тока и возможность его визуального отображения и контроля в процессе зарядки при помощи светодиода и небольшого встроенного стрелочного прибора.

Принципиальная схема ЗУ приведена на рис. 1.

Постоянное выпрямленное напряжение поступает с выпрямителя Br1 на схему ограничителя тока с узлом индикации, собранном на транзисторах VT1, VT2 и светодиоде VD1. Затем, через стабилизатор напряжения на микросхеме DA1, ток заряда поступает на аккумулятор, подключенный к контактам J1 и J2. При этом регулируемый стабилизатор напряжения на микросхеме (МС) DA1 позволяет изменять напряжение стабилизации схемы при помощи переключателя S1 в соответствии с рабочим напряжением подключаемого аккумулятора. Если аккумулятор разряжен и его напряжение меньше значения напряжения стабилизации схемы, через резистор Р1 начинает течь ток, значение которого будет тем больше, чем сильнее степень разряда аккумулятора. В начале зарядки напряжение на этом резисторе превысит значение 0.6 В, откроется транзистор VT2, а VT1, наоборот, станет закрываться, ограничивая выходной ток схемы. Резистор R2 в цепи базы транзистора VT2 защищает его от перегрузки, а светодиод в его коллекторной цепи служит индикатором и светится в процессе заряда. Когда аккумулятор полностью зарядится и его напряжение сравняется с напряжением стабилизации МС DA1, ток через резистор Р1 упадет и транзистор VT2 закроется, что приведет к погасанию светодиода и полному открытию транзистора VT1. При этом напряжение на заряжаемом аккумуляторе не превысит значения напряжения стабилизации МС DA1 (установленное переключателем S1) и это защитит аккумулятор от перезаряда. Таким образом, переменный резистор Р1 является своеобразным «датчиком тока», изменяя сопротивление которого можно задавать первоначальный максимальный зарядный ток.

Конструкция и детали

Схема может питаться от любого малогабаритного трансформатора с напряжением на вторичной обмотке 12 … 20 В. Здесь подойдет, например, трансформатор от «зарядки» для сотовых телефонов старых типов (в «зарядках» новых типов, как правило, применяют импульсные схемы, не имеющие такого понижающего трансформатора). Переменное напряжение с этого трансформатора выпрямляется диодным мостом Br1 и, затем, сглаживается конденсатором C1 (эти элементы также можно взять из той же «зарядки», что и трансформатор). Емкость С1 может быть 470 мкФ и более, напряжение всех конденсаторов в схеме - не ниже 36 В. Диоды выпрямительного моста - любые выпрямительные на ток от 0.5 А (КД226, и др.), можно применить диодный мост типа КЦ403. Транзисторы VT1, VT2 - средней или большой мощности, n-p-n типа (например КТ815, КТ817, КТ805 c любой буквой или импортные аналоги типа ). Допустимый ток коллектора таких транзисторов позволяет устанавливать ток заряда до 1.5 А, но при токах более 200 мА эти транзисторы нужно установить на небольшие радиаторы-теплоотводы. Светодиод может быть любой маломощный, например АЛ307. Микросхема DA1 - регулируемый стабилизатор напряжения или отечественный аналог КР142ЕН12А (с учетом цоколевки выводов). Такие стабилизаторы позволяют регулировать выходное напряжение в широких пределах - от 1.25 до 35 В. Вместо плавной регулировки выходного напряжения в данном случае удобнее использовать дискретный переключатель на несколько положений, соответствующих номинальным значениям тех аккумуляторов, которые предполагается заряжать этим ЗУ. Например: 1.2 В - 2.4 В - 3.6 В - 3.9 В - 9 В - 12 В. В приведенном здесь варианте ЗУ для этой цели используется малогабаритный галетный переключатель на 6 фиксированных положений. Нужные значения напряжений устанавливаются при настройке подбором резисторов R9 … R14, номиналы которых лежат в пределах от десятков Ом до нескольких кОм.

Ток заряда, помимо светодиода, можно контролировать при помощи дополнительного стрелочного микроамперметра, включенного на выходе схемы последовательно с нагрузкой (аккумулятором). Для этого подойдет, например, стрелочный индикатор уровня записи старых магнитофонов или какой-нибудь аналогичный. Можно, конечно, обойтись и без него, сделав схему с заданными фиксированными значениями зарядного тока. Тогда вместо переменного резистора Р1 нужно будет применить набор постоянных сопротивлений, переключаемых в зависимости от нужного значения зарядного тока. В этом случае понадобиться и дополнительный переключатель. Но использование отдельного стрелочного прибора для этих целей сделает работу с ЗУ гораздо более удобной, а сам процесс зарядки будет наглядно отображаться на всем ее протяжении. К тому же, полное погасание светодиода VD1 произойдет при снижении тока через него ниже 10-15 мА (в зависимости от типа), а это не будет соответствовать полной зарядке подключенного аккумулятора, через который еще будет протекать небольшой ток. Поэтому лучше ориентироваться по стрелке прибора.

Зарядное устройство для варианта с МС LM317 собрано на небольшой печатной плате размерами 25 × 30 мм (рис. 2). При использовании других типов МС следует учесть расположение их выводов, оно может отличаться.

ЗУ можно собрать в небольшом корпусе подходящих размеров, например - от сетевого адаптера. Расположение деталей в корпусе такого варианта показано на рис. 3.

Настройка

Настройку предлагаемой схемы ЗУ начинают с установки необходимых зарядных напряжений на выходе. Для этого к клеммам J1 и J2 вместо аккумулятора подключают сопротивление около 100 Ом (мощностью не менее 5 Вт, лучше проволочное, иначе оно будет сильно греться!). Переключатель S1 установить в крайнее положение, соответствующее подключаемому аккумулятору, например, «1.2 В». Подбирая резистор R9, добиваются напряжения на выходных клеммах на 15 - 20 % больше номинального напряжения заряжаемого аккумулятора. То есть, в данном случае, выставляем на выходе около 1.4 В. Затем переключаем S1 в следующее положение (например «2.4 В») и подбором резистора R10 выставляем на выходе около 2.8 В… И так далее, для всех нужных значений. Максимальное напряжение, которое можно выставить таким образом, определяется максимальным значением выходного напряжения МС DA1, а входное напряжение схемы (на коллекторе VT1) должно превышать выходное не менее чем на 3 В для обеспечения нормального режима стабилизации микросхемы.

После установки всех необходимых значений выходного напряжения следует откалибровать стрелочный прибор - микроамперметр. Для этого подключаем в схему последовательно с ним тестер или амперметр, а к выходным клеммам - переменное сопротивление (проволочное, большой мощности) порядка 100 Ом и, меняя его значение, добиваемся на выходе максимального значения тока, на который будет рассчитано наше зарядное устройство (например, 300 мА). Вместо переменного здесь можно использовать и наборы постоянных сопротивлений. После чего подбираем шунт - сопротивление, которое припаиваем между контактами нашего стрелочного индикатора. Его надо подобрать так, чтобы при выбранном максимальном токе стрелка установилась в конец шкалы. Это сопротивление (его видно на рис. 3) для примененного стрелочного индикатора типа «М476» составило 1 Ом. В этом случае полное отклонение стрелки к концу шкалы будет соответствовать току заряда 300 мА. Шкалу можно проградуировать - нанести метки, соответствующие токам от 0 до 0.5 А, однако делать это необязательно. На практике вполне достаточно будет определять примерное значение тока.

Работа с ЗУ

Устанавливаем переключатель S1 в положение, соответствующее номинальному напряжению аккумулятора, который нужно зарядить.

При подключении к клеммам J1, J2 разряженного аккумулятора загорается светодиод, и стрелка прибора отклоняется к концу шкалы. С помощью переменного резистора Р1 выставляем максимальный ток зарядки для данного аккумулятора. По мере заряда аккумулятора яркость светодиода будет постепенно понижаться, а стрелка прибора приближаться к началу шкалы. На последней стадии заряда светодиод погаснет, но о полном заряде аккумулятора лучше делать вывод по стрелке прибора - когда она будет на «нуле» (то есть в самом начале шкалы). После этого аккумулятор может находиться в зарядном устройстве сколь угодно долго - перезаряда его не произойдет.

Если у вас «батарея» аккумуляторов (несколько штук, включенных параллельно или последовательно), то каждый из аккумуляторов лучше заряжать отдельно, а не в группе. Потому, что внутренние сопротивления каждого из них хоть незначительно, но отличаются от остальных, а это может привести к перезаряду или недозаряду отдельных элементов батареи, что отрицательно скажется на ее общей емкости. Например, для зарядки 4-х пальчиковых аккумуляторов лучше сделать четыре модуля (платы), подключенных на каждый аккумулятор отдельно. Трансформатор, выпрямитель (диодный мост) и сглаживающий электролитический конденсатор при этом могут быть общими, но рассчитанными на суммарную мощность нагрузки.

Для комментирования материалов с сайта и получения полного доступа к нашему форуму Вам необходимо

Устройство для зарядки малогабаритных аккумуляторов

На питании малогабаритной аппаратуры от гальванических элементов и батарей при сегодняшних ценах можно буквально разориться. Выгоднее, потратясь один раз, перейти на использование аккумуляторов. Для того чтобы они служили долго, их необходимо правильно эксплуатировать: не разряжать ниже допустимого напряжения, заряжать стабильным током, вовремя прекращать зарядку. Но если за выполнением первого из этих условий приходится следить самому пользователю, то выполнение двух остальных желательно возложить на зарядное устройство. Именно такое устройство и описывается в статье.

При разработке ставилась задача сконструировать устройство, обладающее следующими характеристиками:

  • широкими интервалами изменения зарядного тока и напряжения автоматического прекращения зарядки (АПЗ). обеспечивающими зарядку как отдельных аккумуляторов, применяемых для питания малогабаритной аппаратуры, так и составленных из них батарей при минимальном числе механических переключателей;
  • близкими к равномерным шкалами регуляторов, позволяющими с приемлемой точностью устанавливать зарядный ток и напряжение АПЗ без каких-либо измерительных приборов;
  • высокой стабильностью зарядного тока при изменении сопротивления нагрузки;
  • относительной простотой и хорошей повторяемостью.

Описываемое устройство полностью отвечает этим требованиям. Оно предназначено для зарядки аккумуляторов Д-0,03, Д-0,06. Д-0,125, Д-0,26, Д-0,55. ЦНК-0,45, НКГЦ-1,8, их импортных аналогов и батарей, составленных из них. До выставленного порога включения системы АПЗ аккумулятор заряжается стабилизированным током, не зависящим от типа и числа элементов, при этом напряжение на нем по мере зарядки постепенно растет. После срабатывания системы на аккумуляторе стабильно поддерживается выставленное ранее постоянное напряжение, а зарядный ток уменьшается. Иными словами, перезарядки и разрядки аккумулятора не происходит, и он может оставаться подключенным к устройству длительное время.

Устройство можно использовать в качестве блока питания малогабаритной аппаратуры с регулируемым напряжением от 1,5 до 13 В и защитой от перегрузки и короткого замыкания в нагрузке.

Основные технические характеристики устройства следующие:

  • зарядный ток на пределе "40 мА" - 0...40, на пределе "200 мА" - 40...200 мА;
  • нестабильность зарядного тока при изменении сопротивления нагрузки от 0 до 40 Ом - 2.5 %;
  • пределы регулирования напряжения срабатывания АПЗ - 1,45... 13 В.

Принципиальная схема устройства изображена на рис. 1.

В качестве стабилизатора зарядного тока применен источник тока на транзисторе \Л"4. В зависимости от положения переключателя SA2 ток в нагрузке Iн определяется соотношениями: IН = (UБ - UБЭ)/R10 и IН = (UБ - UБЭ)/(R9 + R10), где UБ - напряжение на базе транзистора VT4 относительно плюсовой шины, В; UБЭ - падение напряжения на его эмиттерном переходе, В; R9, R10 - сопротивления соответствующих резисторов, Ом.

Из этих выражений следует, что. изменяя напряжение на базе транзистора VT4 переменным резистором R8. можно регулировать ток нагрузки в широких пределах. Напряжение на этом резисторе поддерживается неизменным стабилитроном VD6, ток через который, в свою очередь, стабилизирован полевым транзистором VT2. Все это и обеспечивает нестабильность зарядного тока, указанную в технических характеристиках. Применение источника стабильного тока, управляемого напряжением, позволило изменять зарядный ток вплоть до весьма малых значений, иметь близкую к равномерной шкалу регулятора тока (R8) и достаточно просто переключать пределы его регулирования.

Система АПЗ. срабатывающая после достижения предельно допустимого напряжения на аккумуляторе или батарее, включает в себя компаратор на ОУ DA1, электронный ключ на транзисторе VT3, стабилитрон VD5. стабилизатор тока на транзисторе VT1 и резисторах R1 - R4. Индикатором зарядки и ее окончания служит светодиод HL1.

При подключении к устройству разряженного аккумулятора напряжение на нем и неинвертирующем входе ОУ DA1 меньше образцового на инвертирующем, которое установлено переменным резистором R3. По этой причине напряжение на выходе ОУ близко к напряжению общего провода, транзистор VT3 открыт, через аккумулятор течет стабильный ток, значение которого определяется положениями движка переменного резистора R8 и переключателя SA2.

По мере зарядки аккумулятора напряжение на инвертирующем входе ОУ DA1 возрастает. Повышается напряжение и на его выходе, поэтому транзистор VT2 выходит из режима стабилизации тока, VT3 постепенно закрывается и его коллекторный ток уменьшается. Процесс продолжается до тех пор. пока стабилитрон VD6 не перестает стабилизировать напряжение на резисторах R7, R8. С понижением этого напряжения транзистор VT4 начинает закрываться и зарядный ток быстро уменьшается. Его конечное значение определяется суммой тока саморазрядки аккумулятора и тока, текущего через резистор R11. Иными словами, с этого момента на заряженном аккумуляторе поддерживается напряжение, установленное резистором R3, а через аккумулятор течет ток, необходимый для поддержания этого напряжения.

Светодиод HL1 индицирует включение устройства в сеть и две фазы процесса зарядки. При отсутствии аккумулятора на резисторе R11 устанавливается напряжение, определяемое положением движка переменного резистора R3. Для поддержания этого напряжения требуется весьма незначительный ток, поэтому HL1 светится очень слабо. В момент подключения аккумулятора яркость его свечения возрастает до максимальной, а после срабатывания системы АПЗ по окончании зарядки - скачкообразно уменьшается до средней между названными выше. При желании можно ограничиться двумя уровнями свечения (слабое, сильное), для чего достаточно подобрать резистор R6.

Детали устройства смонтированы на печатной плате, чертеж которой показан на рис. 2. Она выполнена методом прорезания фольги и рассчитана на установку постоянных резисторов МЛТ, подстроечного (проволочного) ППЗ-43. конденсаторов К52-1Б (С1) и KM (С2). Транзистор VT4 установлен на теплоотводе с эффективной площадью теплового рассеяния 100 см2. Переменные резисторы R3 и R8 (ППЗ-11 группы А) закреплены на передней панели устройства и снабжены шкалами с соответствующими отметками.

(нажмите для увеличения)

Переключатели SA1 и SA2 - любого типа, желательно, однако, чтобы контакты используемого в качестве SA2 были рассчитаны на коммутацию тока не менее 200 мА.

Сетевой трансформатор Т1 должен обеспечивать на вторичной обмотке переменное напряжение 20 В при токе нагрузки 250 мА.

Полевые транзисторы КП303В можно заменить на КП303Г - КП303И, биполярные КТ361В - на транзисторы серий КТ361. КТ3107, КТ502 с любым буквенным индексом (кроме А), а КТ814Б - на КТ814В, КТ814Г, КТ816В, КТ816Г. Стабилитрон Д813 (VD5) необходимо подобрать с напряжением стабилизации не менее 12,5 В. Вместо него допустимо использовать Д814Д или любые два соединенных последовательно маломощных стабилитрона с суммарным напряжением стабилизации 12,5... 13,5 В. Возможна замена ППЗ-11 (R3, R8) переменными резисторами любого типа группы А, а ППЗ-43 (R10) - подстроенным резистором любого типа с мощностью рассеяния не менее 3 Вт.

Налаживание устройства начинают с подбора яркости свечения светодиода HL1. Для этого переводят переключатели SA1 и SA2 соответственно в положения "13 В" и "40 мА". а движок переменного резистора R8 - в среднее, подключают к гнездам XS1 и XS2 резистор сопротивлением 50... 100 Ом и находят такое положение движка резистора R3. в котором изменяется яркость свечения HL1. Увеличения различия в яркости свечения добиваются подбором резистора R6.

Затем устанавливают границы интервалов регулирования зарядного тока и напряжения АПЗ. Подключив к выходу устройства миллиамперметр с пределом измерения 200...300 мА. переводят движок резистора R8 в нижнее (по схеме) положение, а переключатель SA2 - в положение "200 мА". Изменением сопротивления подстроечного резистора R10 добиваются отклонения стрелки прибора до отметки 200 мА. Затем перемещают движок R8 в верхнее положение и подбором резистора R7 добиваются показаний 36...38 мА. Наконец, переключают SA2 о положение "40 мА". возвращают движок переменного резистора R8 в нижнее положение и подбором R9 устанавливают выходной ток в пределах 43...45 мА.

Для подгонки границ интервала регулирования напряжения АПЗ переключатель SA1 устанавливают в положение "13 В", а к выходу устройства подключают вольтметр постоянного тока с пределом измерения 15...20 В. Подбором резисторов R1 и R4 добиваются показаний 4,5 и 13 В в крайних положениях движка резистора R3. После этого, переведя SA1 в положение "4,5 В", в тех же положениях движка R3 устанавливают стрелку прибора на отметки 1.45 и 4,5 В подбором резистора R2.

В процессе эксплуатации напряжение АПЗ устанавливают из расчета 1,4... 1,45 В на один заряжаемый аккумулятор.

Если устройство не предполагается использовать для питания радиоаппаратуры, индикацию окончания зарядки погасанием светодиода можно заменить его миганием, для чего достаточно ввести в компаратор гистерезис - дополнить устройство резисторами R12, R13 (рис. 3), а резистор R6 удалить.

После такой доработки при достижении установленного значения напряжения АПЗ светодиод HL1 погаснет, а зарядный ток через аккумулятор полностью прекратится. В результате напряжение на нем начнет падать, поэтому вновь включится стабилизатор тока и загорится светодиод HL1. Иными словами, при достижении установленного напряжения HL1 начнет мигать, что иногда более наглядно, чем некая средняя яркость свечения. Характер процесса зарядки аккумулятора в обоих случаях остается неизменным.

Я постарался вставить в заголовок этой статьи все плюсы данной схемы, которою мы будем рассматривать и естественно у меня это не совсем получилось. Так что давайте теперь рассмотрим все достоинства по порядку.
Главным достоинством зарядного устройство является то, что оно полностью автоматическое. Схема контролирует и стабилизирует нужный ток зарядки аккумулятора, контролирует напряжение аккумуляторной батареи и как оно достигнет нужного уровня – убавит ток до нуля.

Какие аккумуляторные батареи можно заряжать?

Практически все: литий-ионные, никель-кадмиевые, свинцовые и другие. Масштабы применения ограничиваются только током заряда и напряжением.
Для всех бытовых нужд этого будет достаточно. К примеру, если у вас сломался встроенный контроллер заряда, то можно его заменить этой схемой. Аккумуляторные шуруповерты, пылесосы, фонари и другие устройства возможно заряжать этим автоматическим зарядным устройством, даже автомобильные и мотоциклетные батареи.

Где ещё можно применить схему?

Помимо зарядного устройства можно применить данную схему как контроллер зарядки для альтернативных источников энергии, таких как солнечная батарея.
Также схему можно использовать как регулируемый источник питания для лабораторных целей с защитой короткого замыкания.

Основные достоинства:

  • - Простота: схема содержит всего 4 довольно распространённых компонента.
  • - Полная автономность: контроль тока и напряжения.
  • - Микросхемы LM317 имеют встроенную защиту от короткого замыкания и перегрева.
  • - Небольшие габариты конечного устройства.
  • - Большой диапазон рабочего напряжения 1,2-37 В.

Недостатки:

  • - Ток зарядки до 1,5 А. Это скорей всего не недостаток, а характеристика, но я определю данный параметр сюда.
  • - При токе больше 0,5 А требует установки на радиатор. Также следует учитывать разницу между входным и выходным напряжением. Чем эта разница будет больше, тем сильнее будут греться микросхемы.

Схема автоматического зарядного устройства

На схеме не показан источник питания, а только блок регулировки. Источником питания может служить трансформатор с выпрямительным мостом, блок питания от ноутбука (19 В), блок питания от телефона (5 В). Все зависит от того какие цели вы преследуете.
Схему можно поделать на две части, каждая из них функционирует отдельно. На первой LM317 собран стабилизатор тока. Резистор для стабилизации рассчитывается просто: «1,25 / 1 = 1,25 Ом», где 1,25 – константа которая всегда одна для всех и «1» - это нужный вам ток стабилизации. Рассчитываем, затем выбираем ближайший из линейки резистор. Чем выше ток, тем больше мощность резистора нужно брать. Для тока от 1 А – минимум 5 Вт.
Вторая половина - это стабилизатор напряжения. Тут все просто, переменным резистором выставляете напряжение заряженного аккумулятора. К примеру, у автомобильных батарей оно где-то равно 14,2-14,4. Для настройки подключаем на вход нагрузочный резистор 1 кОм и измеряем мультиметром напряжение. Выставляем подстрочным резистором нужное напряжение и все. Как только батарея зарядится и напряжение достигнет выставленного – микросхема уменьшит ток до нуля, и зарядка прекратиться.
Я лично использовал такое устройство для зарядки литий-ионных аккумуляторов. Ни для кого не секрет, что их нужно заряжать правильно и если допустить ошибку, то они могут даже взорваться. Это ЗУ справляется со всеми задачами.



Чтобы контролировать наличие заряда можно воспользоваться схемой, описанной в этой статье - .
Есть ещё схема включения этой микросхемы в одно: и стабилизация тока и напряжения. Но в таком варианте наблюдается не совсем линейная работа, но в некоторых случаях может и сгодиться.
Информативное видео, только не на русском, но формулы расчета понять можно.

В настоящее время широко применяются устройства, для автоматической зарядки с аккумуляторов напряжением 6 и 12 В. Опыт эксплуатации аккумуляторов показываете т целесообразность раздельной и независимой зарядки аккумуляторных элементов с напряжением 1.25 В каждый. Действительно, в природе нет абсолютно одинаковых по параметрам аккумуляторов. Даже аккумуляторы одной серии и партии отличаются друг от друга, особенно через некоторое время. Индивидуальная зарядка позволяет наиболее полно восстановить ёмкость каждого аккумулятора. Только за счёт индивидуальной зарядки аккумуляторных элементов срок их эксплуатации возрастает на 50... 100%. Приводиться схема доработанного зарядного устройства. Другое отличие от аналогичных схем использование двух компараторов вместо четырех. Казалось бы, для этого достаточно включить света диоды индикации режима непосредственно с выходов компараторов на корпус. Однако сразу же возникают проблемы: напряжение на выходе компараторов при работе изменяется от нулевого во время зарядки аккумуляторов до половины напряжения источника питания микросхем в режиме ожидания заряда. При этом естественно, ток заряда, аккумуляторов полностью не прекращается, а только незначительно уменьшается. Замена микросхемы на аналогичную или подбор не приводят к устранению этого явления. Задачу удалось решить, изменив схему включения светодиода, ожидания даже при использовании в схеме слаботочных компараторов. Упростилась и схема зарядного устройства: вместо микросхемы счетверенного: компаратора LT339 применено менее дефицитная и белее дешевая микросхема сдвоенного компаратора LTЗ93. При желании радиолюбители могут попробовать использовать микросхемы бытовых сдвоенных операционных усилителей, например, серии 1458 или К157УД2. Компараторы напряжения DA1.1 и DA1.2 управляют работой зарядных устройств. Напряжение на инвертирующих входах компараторов является эталонным для схемы и выставляется при настройке подстроечным резистором R3. диоды VD5 и VD10 защищают микросхему DA1 при ошибочном подключении к устройству аккумуляторов в противоположной полярности. Если напряжение подключаемого аккумулятора меньше чем опорного напряжения инвертирующего входа компаратора, то на выходе компаратора устанавливается низкий потенциал – около 0,18 В. При этом через резистор R9 (R14) и стабилитрон VD6 (VD12) отпирается VТ1 (VT2). Зажигается светодиод VD7 (VD15) зелёного цвета свечения, одновременно стабилизируя напряжение на базе транзистора. Резистор R11 (R17) в цепи эмиттера транзистора обеспечивают работу ключа в режиме стабилизации тока. Подбирая сопротивление этого резистора при настройке схемы, можно задать необходимый для данного типа аккумулятора ток заряда. Диод VD8 (VD16) в цепи коллектора транзистора VT1(VT2) препятствует разряду аккумулятора при отключении зарядного устройства от сети или перебоях электропитания. Как только аккумулятор зарядиться, возрастёт напряжение на инвертирующем входе компаратора, и он переключиться. Зелёный светодиод гаснет, а красный светодиод VD11(VD13) зажигается. Это происходит из-за того, что напряжение на выходе компаратора скачком возрастает почти до напряжения источника питания. Поскольку микросхемы компараторов маломощные, из-за нагрузки напряжение на их выходе возрастает не до напряжения питания микросхем, а менее этой величины на 1,5…2 В. При отсутствии стабилитронов VD6, VD14 это привело бы к неполному запиранию транзисторов VT1, VT2 и наличию существенного тока дозаряда аккумуляторов. Резисторы R7, R12 обеспечивают гистерезис переключения компараторов. При увеличении сопротивлений гистерезис уменьшается. В режиме заряде аккумуляторов выходное сопротивление микросхем компараторов DA1 через диоды VD9,VD12 шунтируют светодиоды VD11,VD13, и они не светятся. Как только аккумулятор зарядиться и компаратор перейдёт в другое устойчивое состояние, напряжение на выходе компараторе скачком возрастает, красный светодиод уже не шунтируется и начинает светиться. Настройку устройства проще всего осуществить по следующей методике. К зарядному устройству подключают предварительно полностью заряженный аккумулятор. Регулируя сопротивление подстроечного резистора R3, добиваются зажигания красного светодиода. Если теперь подключить разряженный аккумулятор, то красный светодиод погаснет, а зелёный загорится. Подбирая сопротивление резисторов R11 и R17, устанавливают необходимый ток заряда аккумуляторов, который, как правило, выбирают равным по величине 0,1 ёмкости аккумулятора. Ток, для аккумуляторов ёмкостью 0,6 Ач был установлен около 60 мА. В качестве R3 целесообразно использовать многооборотный подстроечный резистор типа С15-2. Его сопротивление не критично. Транзисторы VT1, VT2 в авторском варианте установлены на небольшие радиаторы.

Радиоаматор №1 2006г стр. 25