Упп электродвигателя. Устройства плавного пуска: правильный выбор. Устройство плавного пуска двигателя может устанавливаться в приводных системах

31.10.2023 Автоправо

Плавный пуск электродвигателя в последнее время применяется все чаще. Области его применения разнообразны и многочисленны. Это промышленность, электротранспорт, коммунальное и сельское хозяйство. Применение подобных устройств позволяет значительно снизить пусковые нагрузки на электродвигатель и исполнительные механизмы, тем самым, продлив срок их службы.

Пусковые токи

Пусковые токи достигают значений в 7…10 раз выше, чем в рабочем режиме. Это приводит к «просаживанию» напряжения в питающей сети, что отрицательно сказывается не только на работе остальных потребителей, но и самого двигателя. Время пуска затягивается, что может привести к перегреву обмоток и постепенному разрушению их изоляции. Это способствует преждевременному выходу электродвигателя из строя.

Устройства плавного пуска позволяют значительно снизить пусковые нагрузки на электродвигатель и электросеть, что особенно актуально в сельской местности либо при питании двигателя от автономной электростанции.

Перегрузки исполнительных механизмов

В момент запуска двигателя момент на его валу очень нестабилен и превышает номинальное значение более чем в пять раз. Поэтому пусковые нагрузки исполнительных механизмов также повышены по сравнению с работой в установившемся режиме и могут достигать до 500 процентов. Нестабильность момента при пуске приводит к ударным нагрузкам на зубья шестерен, срезанию шпонок и иногда даже к скручиванию валов.

Устройства плавного пуска электродвигателя значительно уменьшают пусковые нагрузки на механизм: плавно выбираются зазоры между зубьями шестерен, что препятствует их поломке. В ременных передачах также плавно натягиваются приводные ремни, что уменьшает износ механизмов.

Кроме плавного пуска на работе механизмов благотворно сказывается режим плавного торможения. Если двигатель приводит в движение насос, то плавное торможение позволяет избежать гидравлического удара при выключении агрегата.

Устройства плавного пуска промышленного изготовления

В настоящее время выпускается многими фирмами, например Siemens, Danfoss, Schneider Electric. Такие устройства обладают многими функциями, которые программируются пользователем. Это время разгона, время торможения, защита от перегрузок и множество других дополнительных функций.

При всех достоинствах фирменные устройства обладают одним недостатком, - достаточно высокой ценой. Вместе с тем можно создать подобное устройство самостоятельно. Стоимость его при этом получится небольшой.

Устройство плавного пуска на микросхеме КР1182ПМ1

В рассказывалось о специализированной микросхеме КР1182ПМ1 , представляющей фазовый регулятор мощности. Были рассмотрены типовые схемы ее включения, устройства плавного запуска ламп накаливания и просто регуляторы мощности в нагрузке. На основе этой микросхемы возможно создание достаточно простого устройства плавного пуска трехфазного электродвигателя. Схема устройства показана на рисунке 1.

Рисунок 1. Схема устройства плавного пуска двигателя.

Плавный пуск осуществляется при помощи постепенного увеличения напряжения на обмотках двигателя от нулевого значения до номинального. Это достигается за счет увеличения угла открывания тиристорных ключей за время, называемое временем запуска.

Описание схемы

В конструкции используется трехфазный электродвигатель 50 Гц, 380 В. Обмотки двигателя, соединенные «звездой», подключаются к выходным цепям, обозначенным на схеме как L1, L2, L3. Средняя точка «звезды» подключается к сетевой нейтрали (N).

Выходные ключи выполнены на тиристорах включенных встречно - параллельно. В конструкции применены импортные тиристоры типа 40TPS12. При небольшой стоимости они обладают достаточно большим током - до 35 А, а их обратное напряжение 1200 В. Кроме них в ключах присутствуют еще несколько элементов. Их назначение следующее: демпфирующие RC цепочки, включенные параллельно тиристорам, предотвращают ложные включения последних (на схеме это R8C11, R9C12, R10C13), а с помощью варисторов RU1…RU3 поглощаются коммутационные помехи, амплитуда которых превышает 500 В.

В качестве управляющих узлов для выходных ключей используются микросхемы DA1…DA3 типа КР1182ПМ1. Эти микросхемы достаточно подробно были рассмотрены в . Конденсаторы С5…С10 внутри микросхемы формируют пилообразное напряжение, которое синхронизировано сетевым. Сигналы управления тиристорами в микросхеме формируются путем сравнения пилообразного напряжения с напряжением между выводами микросхемы 3 и 6.

Для питания реле К1…К3 в устройстве имеется блок питания, который состоит всего из нескольких элементов. Это трансформатор Т1, выпрямительный мостик VD1, сглаживающий конденсатор С4. На выходе выпрямителя установлен интегральный стабилизатор DA4 типа 7812 обеспечивающий на выходе напряжение 12 В, и защиту от коротких замыканий и перегрузок на выходе.

Описание работы устройства плавного пуска электродвигателей

Сетевое напряжение на схему подается при замыкании силового выключателя Q1. Однако, двигатель еще не запускается. Это происходит потому, что обмотки реле К1…К3 пока обесточены, и их нормально-замкнутые контакты шунтируют выводы 3 и 6 микросхем DA1…DA3 через резисторы R1…R3. Это обстоятельство не дает заряжаться конденсаторам С1…С3, поэтому управляющие импульсы микросхемы не вырабатывают.

Пуск устройства в работу

При замыкании тумблера SA1 напряжение 12 В включает реле К1…К3. Их нормально-замкнутые контакты размыкаются, что обеспечивает возможность зарядки конденсаторов С1…С3 от внутренних генераторов тока. Вместе с увеличением напряжения на этих конденсаторах увеличивается и угол открывания тиристоров. Тем самым достигается плавное увеличение напряжения на обмотках двигателя. Когда конденсаторы зарядятся полностью, угол включения тиристоров достигнет максимальной величины, и частота вращения электродвигателя достигнет номинальной.

Отключение двигателя, плавное торможение

Для выключения двигателя следует разомкнуть выключатель SA1, Это приведет к отключению реле К1…К3. Их нормально - замкнутые контакты замкнутся, что приведет к разряду конденсаторов С1…С3 через резисторы R1…R3. Разряд конденсаторов будет длиться несколько секунд, за это же время произойдет останов двигателя.

При пуске двигателя в нулевом проводе могут протекать значительные токи. Это происходит оттого, что в процессе плавного разгона токи в обмотках двигателя несинусоидальные, но особо бояться этого не стоит: процесс пуска достаточно кратковременный. В установившемся же режиме этот ток будет много меньше (не более десяти процентов тока фазы в номинальном режиме), что обусловлено лишь технологическим разбросом параметров обмоток и «перекосом» фаз. От этих явлений избавиться уже невозможно.

Детали и конструкция

Для сборки устройства необходимы следующие детали:

Трансформатор мощностью не более 15 Вт, с напряжением выходной обмотки 15…17 В.

В качестве реле К1…К3 подойдут любые с напряжением катушки 12 В, имеющие нормально-замкнутый или переключающий контакт, например TRU-12VDC-SB-SL.

Конденсаторы С11…С13 типа К73-17 на рабочее напряжение не менее 600 В.

Устройство выполнено на печатной плате. Собранное устройство следует поместить в пластмассовый корпус подходящих размеров, на лицевой панели которого разместить выключатель SA1 и светодиоды HL1 и HL2.

Подключение двигателя

Подключение выключателя Q1 и двигателя выполняется проводами, сечение которых соответствует мощности последнего. Нулевой провод выполняется тем же проводом, что и фазные. При указанных на схеме номиналах деталей возможно подключение двигателей мощностью до четырех киловатт.

Если предполагается использовать двигатель мощностью не более полутора киловатт, а частота пусков не будет превышать 10…15 в час, то мощность, рассеиваемая на тиристорных ключах незначительна, поэтому радиаторы можно не ставить.

Если же предполагается использовать более мощный двигатель или запуски будут более частыми, потребуется установка тиристоров на радиаторы, изготовленные из алюминиевой полосы. Если же радиатор предполагается использовать общий, то тиристоры следует изолировать от него при помощи слюдяных прокладок. Для улучшения условий охлаждения можно воспользоваться теплопроводящей пастой КПТ - 8.

Проверка и наладка устройства

Перед включением, прежде всего, следует проверить монтаж на соответствие принципиальной схеме. Это основное правило, и отступать от него нельзя. Ведь пренебрежение этой проверкой может привести к куче обугленных деталей, и надолго отбить охоту делать «опыты с электричеством». Найденные ошибки следует устранить, ведь все же эта схема питается от сети, а с нею шутки плохи. И даже после указанной проверки подключать двигатель еще рано.

Сначала следует вместо двигателя подключить три одинаковых лампы накаливания, мощностью 60…100 Вт. При испытаниях следует добиться, чтобы лампы «разжигались» равномерно.

Неравномерность времени включения обусловлена разбросом емкостей конденсаторов С1…С3, которые имеют значительный допуск по емкости. Поэтому лучше перед установкой сразу подобрать их с помощью прибора, хотя бы с точностью процентов до десяти.

Время выключения обусловлено еще сопротивлением резисторов R1…R3. С их помощью можно выровнять время выключения. Эти настройки следует выполнять в том случае, если разброс времени включения - выключения в разных фазах превышает 30 процентов.

Двигатель можно подключать лишь после того, как вышеуказанные проверки прошли нормально, не сказать бы даже на отлично.

Что можно еще добавить в конструкцию

Выше уже было сказано, что такие устройства в настоящее время выпускаются разными фирмами. Конечно, все функции фирменных устройств в подобном самодельном повторить невозможно, но одну все-таки, скопировать, наверно, удастся.

Речь идет о так называемом . Назначение его следующее: после того, как двигатель достиг номинальных оборотов, контактор просто перемыкает тиристорные ключи своими контактами. Ток идет через них в обход тиристоров. Такую конструкцию часто называют байпасом (от английского bypass - обход). Для такого усовершенствования придется ввести дополнительные элементы в блок управления.

Борис Аладышкин

Устройства плавного пуска (УПП)(Софтстартеры) представляет механизм, обеспечивающий плавный рост пусковых характеристик электродвигателей. Он смягчает процесс запуска и остановки работы .

Функции и возможности устройства плавного пуска

У двигателей, запустившихся в работу напрямую, характеристики значительно превышают номинальные значения. Повышенные значения пусковых токов и крутящего момента при пуске, являются источниками повреждений, это механические рывки, повреждения изоляции обмотки, перегрев, тяжелый старт и прочих проблем с электродвигателем. Но с помощью плавного пуска все нежелательные неисправности можно предупредить, поэтому электрические двигатели нуждаются в устройстве плавного пуска (УПП).

Главные функции УПП:

  • Плавный разгон и остановка.
  • Уменьшение пускового тока.
  • Согласование момента нагрузки с крутящим моментом двигателя.

В УПП напряжение на обмотках электродвигателя постепенно нарастает, обеспечивая ограничение тока. Благодаря этому, параметры электромашины при запуске сохраняются в неопасных пределах.

Устройство УПП

УПП выпускаются разных модификаций и могут отличаться принципом работы. Но все софтстартеры имеют одинаковые главные составляющие части.

Основные компоненты УПП:

  • Тиристоры . Эти элементы регулируют напряжение, которое подаётся на электродвигатель.
  • Блок печатных плат . Эта часть софтстартеров управляет тиристорами.
  • Радиаторы, вентиляторы . Эти приборы необходимы для рассеивания тепла.
  • Трансформатор тока . Благодаря этому компоненту, осуществляется измерение тока.
  • Корпус .

Некоторые устройства плавного пуска оснащены клавиатурой и дисплеем. Также в зависимости от типа софтстартера, прибор может быть оборудован встроенным реле перегрузки, из-за чего отпадает потребность во внешнем реле.

Принцип действия УПП

Регулировка пусковых характеристик осуществляется по двум принципам:

  1. Механическому.
  2. Электрическому.

Механические УПП:

Простой способ осуществить плавный запуск двигателя заключается в принудительном удерживании усиливающейся скорости вращения с помощью тормозных колодок, жидкостных муфт и других элементов.

Этот способ имеет существенные минусы:

  • Уменьшение напряжения снижает крутящий момент на валу.
  • Продолжительный старт мотора повышает риск перегрева двигателя.
  • Длительный запуск может привести к перегреву полупроводниковых компонентов УПП, после чего они могут выйти из строя.

Также механическое управление пуском осуществляется исключительно при небольших нагрузках либо запуске двигателя вхолостую.

Электрические УПП считаются более совершенными, их разделяют на два вида по специфике работы:

  1. Амплитудные . Софтстартеры этого типа обеспечивают старт мотора в холостом режиме либо с умеренной нагрузкой. Эти устройства постепенно повышают напряжение на клеммах электродвигателя до предельных показателей.
  2. Частотные (фазовые) . Эти УПП управляют частотными характеристиками фазного тока, не снижая напряжение. Благодаря этому, запустить мотор удается даже при большой нагрузке.

Фазовые УПП предоставляют следующие преимущества:

  • Возможность осуществлять размеренное прибавление вращательной частоты в рабочем режиме.
  • Гарантируют стабильность высокой мощности мотора даже при смене скорости вала.

Минусы фазовых УПП:

  • Сложность монтажа.
  • Сложная наладка.

Электрические приборы для плавного пускового процесса не имеют таких недостатков, которые могли бы привести к неполадке самого устройства или двигателя. Они всегда оправдывают себя при эксплуатации, но стоят гораздо дороже УПП с механическим управлением.

Виды УПП

УПП разделяют на следующие типы:

  • Регуляторы напряжения, в которых присутствует функция обратной связи . Это усовершенствованные модели УПП, контролирующие фазовый сдвиг между током в обмотках и напряжением.
  • Регуляторы напряжение, в которых отсутствует функция обратной связи . Приборы широко используются по сравнению с другими пускателями. Управление в них можно осуществлять по двум либо трем фазам исключительно по указанным ранее параметрам.
  • Регуляторы пускового момент а . Эти приборы могут координировать исключительно одну фазу электродвигателя. А это позволяет контролировать пусковой момент двигателя и совсем незначительно снижать пусковой ток. Можно сказать, эти регуляторы не контролируют ток, его уменьшение малозаметно, поэтому он практически такой, как при прямом запуске. Если такой ток будет протекать по обмоткам двигателя дольше, чем обычно при прямом пуске, то может возникнуть, перегрев электродвигателя. Поэтому этот тип УПП не используется для устройств, требующих снижение пусковых токов. Но их можно использовать для плавного запуска однофазных асинхронных электродвигателей.
  • Регуляторы тока с обратной связью . Это наиболее прогрессивные устройства для плавного пуска. Они осуществляют прямой контроль над током, что позволяет более точно управлять пуском. Преобладают простой настройкой, а также программированием пускателя. Большая часть параметров устанавливается автоматически.

Приборы, управляющие напряжением и не имеющие обратной связи, являются наиболее распространённым видом УПП. Они бывают двух- и трехфазными. Эти УПП могут контролировать напряжение в двух и сразу в трех фазах двигателя. Регулирование выполняется исключительно по ранее заданной программе, которая включает показатели исходного напряжения пуска и точное время, за которое напряжение должно дорасти до номинального значения. Некоторые модели этих пускателей способны ограничивать пусковой ток, но чаще всего это ограничение связано с уменьшением напряжения при пуске двигателя. Также они могут управлять процессом замедления, медленно снижая напряжение для остановки.

Электрические и механические характеристики этих устройств отвечают всем стандартным требованиям, предъявляемым к УПП. Но более совершенным вариантом этих софтстартеров являются регуляторы, имеющие обратную связь.

Регуляторы напряжения с обратной связью получают данные о токе двигателя и, пользуясь этой информацией, приостанавливают рост напряжения во время запуска. Снижать нарастание напряжения регуляторы начинают тогда, когда током будут достигнуты предельные значения, которые указываются заранее. Такие УПП позволяют осуществлять запуск с минимальным значением тока и удовлетворительным значением крутящего момента. А данные, которые они получают, применяются для организации защит от дисбаланса фаз, перегрузки и пр.

Применение УПП

УПП эксплуатируются во всех областях промышленности и сельского хозяйства. Их можно применять везде, где присутствует электродвигатель. Но выбирают устройства плавного пуска исходя из нагрузки двигателя, а также частоты запусков.

При небольших нагрузках и не частых запусках следует устанавливать регуляторы без обратной связи или регуляторы пускового момента. Эти УПП подходят для шлифовальных станков, некоторых типов вентиляторов, вакуумных насосов и пр. оборудования с низкими нагрузками.

При частых инерционных запусках и высокой нагрузке рекомендованы регуляторы с обратной связью. Их целесообразно применять в центрифуге, ленточной пиле, вертикальном конвейере, распылителе и т.п.

Достоинства и наличие недостатков

Применение устройства плавного пуска снижает вероятность перегрева двигателя. Таким образом, можно выделить главные плюсы использования УПП:

  • Повышают срок службы электродвигателей и других исполнительных устройств, контактирующих с электродвигателем.
  • Понижают расход энергии.
  • Снижают затраты на эксплуатацию машин.
  • Регулирует длительность разгона и торможения электрического двигателя.
  • Снижает силу электромагнитных помех.
  • Монтируется и эксплуатируется без особых трудностей.

Недостатки:

  • Не выполняют возврат направления вращения.
  • Не контролируют в установившемся режиме частоту вращений двигателя.
  • Уменьшить пусковой ток до меньших значений, требующихся в момент старта для вращения ротора.

Устройства плавного пуска электродвигателя, считаются распространёнными приборами, решающими проблемы прямого пуска.

Soft Starter Toshiba TMC7 – пример мягкого пускателя

При словах “мягкий пускатель” у человека, далёкого от электроники, возникает ассоциация – что-то мягкое, набитое поролоном или ватой.

Но давайте серьезно рассмотрим это замечательное устройство, выясним, что у него внутри и с какой стороны к нему подходить.

Мягкий пускатель – что это такое?

Понятие “мягкий” относится не к самому пускателю, а к пуску двигателя, который подключается через такой пускатель.

Имеется ввиду, как правило, асинхронный электрический двигатель с короткозамкнутым ротором. Это самый распространенный тип двигателей. По моим наблюдениям, в 95% случаев в промышленном оборудовании применяются именно асинхронные двигатели.

Выбор

При выборе мягкого пускателя вполне логично руководствоваться прежде всего мощностью подключаемого электромотора.

Однако, если мотор имеет тяжелые условия пуска, а также при частом включении/выключении, необходим запас по мощности.

Дело в том, что мягкий пускатель устроен так, что не может долго тянуть двигатель на напряжении ниже номинального. Поскольку для этого применяются тиристоры, а они греются. И им нужно время, чтобы остыть и подготовиться “морально” для очередного пуска или останова. Во время нормальной работы, когда двигатель работает на номинале, тиристоры полностью открыты, напряжение на них стремится к нулю, и они практически не греются.

В мощных софтстартерах, чтобы не напрягать тиристоры после выхода двигателя на номинал, используют шунтирующий контактор (байпас), который может быть как встроенным, так и внешним.

Основные параметры

1. Время разгона (передняя рампа) . Название говорит за себя. Чем меньше время разгона, тем труднее двигателю, и тем меньше смысла использовать мягкий пускатель. Обычное время разгона – 10…20 сек. Чем больше это время, тем труднее мягкому пускателю – тиристоры не могут работать в таком режиме длительное время, греются. Другое название параметра – наклон характеристики разгона.

2. Время торможения (замедления), задняя рампа . То же самое, но напряжение плавно понижается. Другое название – наклон характеристики торможения.

А что там свежего в группе ВК СамЭлектрик.ру ?

Подписывайся, и читай статью дальше:

3. Начальное напряжение. Если это значение выставить малым, то двигатель будет плавно набирать обороты. Если очень малым – может вообще не тронуться. Оптимально – выставить такой минимальный уровень, при котором мотор гарантированно начнет вращаться при включении.

4. Ограничения тока. Тут принцип такой же, как и у теплового реле, которое . Только реле не может долго терпеть, и отключает цепь пуска, а софт стартер ограничивает ток двигателя на установленном уровне. Например, при разгоне ток некоторое время может составлять 120-140% от номинала, это нормально. Ток будет сохраняться на уровне ограничения, затем напряжение продолжит увеличиваться до номинала.

5. Номинальный ток. Этот параметр используется для защиты двигателя в процессе работы, и аналогичен работе теплового реле – отключает двигатель, если ток превысил уставку.

Схема включения

Схемы включения софт стартеров могут отличаться для разных моделей, но смысл один.

Выделю основные тезисы.

1. Три фазы на входе, три фазы – на выходе.

2. Система управления пуском/стопом – двухпроводная (переключатель) либо трехпроводная (две кнопки, Пуск и Стоп):

3. Внутреннее реле аварии, которое говорит о ошибке (например, перегрев или перегрузка) и размыкает соответствующую .

Схема включения мягкого пускателя

Подробнее про схемы включения и пример реального применения мягких пускателей – .

Настройка параметров

Рассмотрим подробно для примера переднюю панель Софтстартера Toshiba TMC7, внешний вид которого показан в самом начале этой статьи.

Мягкий пускатель (SoftStarter) Toshiba TMC7 – передняя панель

Reset – сброс ошибок.

Trip codes – коды ошибок, которые индицируются в определенном количестве миганий светодиода Ready.

Вот количество миганий и соответствующая ошибка:

  1. Проблема с силовой частью
  2. Превышено время старта
  3. Перегрузка двигателя
  4. Перегрев двигателя
  5. Дисбаланс по фазам
  6. Частота на входе вышла за пределы 40…72 Гц
  7. Ошибка чередования фаз
  8. Ошибка связи (в случае применения дополнительного модуля)

Current Ramp – Нарастание тока при запуске, в процентах и в секундах.

Motor FLC – ток двигателя, в процентах от номинала мягкого пускателя. Параметр защиты двигателя.

Current limit – ограничение тока во время старта

Soft Stop – время мягкого останова. 0 – выбег двигателя (отключение питания, вращение по инерции)

Motor Trip Class – Класс термозащиты двигателя. Чем выше значение, тем медленнее сработает тепловая защита двигателя при перегрузке

AUX relay, Phase rotatoin – функция внутреннего реле, защита от смены фаз от неправильного вращения

Excess Start Time – Превышение времени старта. Двигатель за данное время не смог развить номинальную скорость. Требуется увеличить уровень ограничения тока.

По контактам управления.

С1, С2 – клеммы подключения термистора двигателя. Если термистора нет, устанавливается перемычка.

R33…R44 – выходы функциональных реле

02, 01 – подключение кнопок управления

А2, А1, А3 – выходы для питания цепей управления и контрольных цепей схемы софт стартера.

Защита

Поскольку Soft Starter – это электронное силовое устройство, то для его защиты по входу требуются быстродействующие предохранители. На крайний случай – быстродействующие защитные автоматы с характеристикой В. Я об этом много распространяюсь в статье про твердотельные реле, .

С другой стороны (по выходу Мягкого пускателя) надо защитить пускатель и двигатель от длительного перегруза. Это определяется классом срабатывания защиты . Класс срабатывания защиты определяет время пуска при заданном токе двигателя до того, как сработает защита. Существует несколько классов защиты – 10, 20, 30. Чем больше класс, тем большая инерция у системы защиты.

Кому хочется напрягаться, тратить свои деньги и время на переоборудование устройств и механизмов, которые и так прекрасно работают? Как показывает практика – многим. Хоть и не каждый в жизни сталкивается с промышленным оборудованием, оснащённым мощными электродвигателями, но, постоянно встречается пусть с не столь прожорливыми и мощными, электромоторами в быту. Ну а лифтом, наверняка, пользовался каждый.

Электродвигатели и нагрузки - проблема?

Дело в том, что фактически любые электродвигатели, в момент пуска или остановки ротора, испытывают огромные нагрузки. Чем мощнее двигатель и оборудование, приводимое им в движение, тем грандиозней затраты на его запуск.

Наверное, самая значительная нагрузка, приходящаяся на двигатель в момент пуска, это многократное, хоть и кратковременное, превышение номинального рабочего тока агрегата. Уже через несколько секунд работы, когда электромотор выйдет на свои штатные обороты, ток, потребляемый им, тоже вернётся к нормальному уровню. Для обеспечения необходимого электроснабжения приходиться наращивать мощность электрооборудования и токопроводящих магистралей , что приводит к их подорожанию.

При запуске мощного электродвигателя, из-за его большого потребления, происходит «просадка» напряжения питания, которая может привести к сбоям или выходу из строя оборудования, запитанного с ним от одной линии. Ко всему прочему, снижается срок службы аппаратуры электроснабжения.

При возникновении нештатных ситуаций, повлёкших перегорание двигателя или его сильный перегрев, свойства трансформаторной стали могут измениться настолько, что после ремонта двигатель потеряет до тридцати процентов мощности. При таких обстоятельствах, к дальнейшей эксплуатации он уже непригоден и требует замены, что тоже недешево.

Для чего нужен плавный пуск?

Казалось бы, все правильно, да и оборудование на это рассчитано. Вот только всегда есть «но». В нашем случае их несколько:

  • в момент запуска электродвигателя, ток питания может превышать номинальный в четыре с половиной-пять раз, что приводит к значительному нагреву обмоток, а это не очень хорошо;
  • старт двигателя прямым включением приводит к рывкам, которые в первую очередь влияют на плотность тех же обмоток, увеличивая трение проводников во время работы, ускоряет разрушение их изоляции и, со временем, может привести к межвитковому замыканию;
  • вышеупомянутые рывки и вибрация передаются на весь приводимый в движение агрегат. Это уже совсем нездорово, потому что может привести к повреждению его движущихся элементов : систем зубчатых передач, приводных ремней, конвейерных лент или просто представьте себя едущим в дёргающемся лифте. В случае насосов и вентиляторов - это риск деформации и разрушения турбин и лопастей;
  • не стоит также забывать об изделиях, возможно находящихся на производственной линии. Они могут упасть, рассыпаться или разбиться из-за такого рывка;
  • ну, и наверно, последний из моментов, заслуживающих внимание - стоимость эксплуатации такого оборудования. Речь идёт не только о дорогостоящих ремонтах, связанных с частыми критическими нагрузками, но и об ощутимом количестве не эффективно израсходованной электроэнергии.

Казалось бы, все вышеперечисленные сложности эксплуатации присущи лишь мощному и громоздкому промышленному оборудованию, однако, это не так. Все это может стать головной болью любого среднестатистического обывателя. В первую очередь это касается электроинструмента.

Специфика применения таких агрегатов, как электролобзики, дрели, болгарки и им подобных, предполагают многократные циклы запуска и остановки, в течение относительно небольшого промежутка времени. Такой режим эксплуатации, в той же мере, влияет на их долговечность и энергопотребление, как и у их промышленных собратьев. При всем этом не стоит забывать, что системы плавного запуска не могут регулировать рабочие обороты мотора или реверсировать их направление. Также невозможно увеличить пусковой момент или снизить ток ниже, чем требуется для начала вращения ротора электродвигателя.

Видео: Плавный пуск, регулировка и защита колектор. двигателя

Варианты систем плавного пуска электродвигателей

Система «звезда-треугольник»

Одна из наиболее широко применяемых систем запуска промышленных асинхронных двигателей. Основным её преимуществом является простота. Двигатель запускается при коммутации обмоток системы «звезда», после чего, при наборе штатных оборотов, автоматически переключается на коммутацию «треугольник». Такой вариант старта позволяет добиться тока почти на треть ниже , чем при прямом запуске электромотора.

Однако, этот способ не подойдёт для механизмов с небольшой инерцией вращения. К таким, к примеру, относятся вентиляторы и небольшие насосы, из-за малых размеров и массы их турбин. В момент перехода с конфигурации «звезда» на «треугольник», они резко снизят обороты или вовсе остановятся. В результате после переключения, электродвигатель по сути, запускается заново. То есть в конечном счёте вы не добьётесь не только экономии ресурса двигателя, но и, вероятнее всего, получите перерасход электроэнергии.

Видео: Подключение трёхфазного асинхронного электродвигателя звездой или треугольником

Электронная система плавного пуска электродвигателя

Плавный пуск двигателя может быть произведён с помощью симисторов, включённых в цепи управления. Существует три схемы такого включения: однофазные, двухфазные и трехфазные. Каждая из них отличается своими функциональными возможностями и конечной стоимостью соответственно.

С помощью таких схем, обычно, удаётся снизить пусковой ток до двух–трёх номинальных. Кроме этого, удаётся снизить существенный нагрев, присущий вышеупомянутой системе «звезда-треугольник», что способствует увеличению срока службы электродвигателей. Благодаря тому, что управление запуска двигателя происходит за счёт снижения напряжения, разгон ротора осуществляется плавно, а не скачкообразно, как у других схем.

В целом, на системы плавного пуска двигателя возлагаются несколько ключевых задач:

  • основная – понижение пускового тока до трёх–четырёх номинальных;
  • снижение напряжения питания двигателя, при наличии соответствующих мощностей и проводки;
  • улучшение параметров пуска и торможения;
  • аварийная защита сети от перегрузок по току.

Однофазная схема пуска

Данная схема предназначена для запуска электродвигателей мощностью не более одиннадцати киловатт. Применяют такой вариант в том случае, если требуется смягчить удар при запуске, а торможение, плавный пуск и понижение пускового тока не имеют значения. В первую очередь из-за невозможности организации последних, в такой схеме. Но по причине удешевления производства полупроводников, в том числе и симисторов, они сняты с производства и редко встречаются;

Двухфазная схема пуска

Такая схема предназначена для регулирования и пуска двигателей мощностью до двухсот пятидесяти ватт. Такие системы плавного пуска иногда комплектуют обходным контактором для удешевления прибора, однако, это не решает проблемы несимметричности питания фаз, что может привести к перегреву;

Трехфазная схема пуска

Эта схема является наиболее надёжной и универсальной системой плавного пуска электродвигателей. Максимальная мощность, управляемых таким устройством двигателей, ограничена исключительно максимальной температурной и электрической выносливостью применённых симисторов. Его универсальность позволяет реализовать массу функций , таких как: динамический тормоз, подхват обратного хода или балансировку ограничения магнитного поля и тока.

Важным элементом последней, из упомянутых схем, является обходной контактор, о котором говорилось раньше. Он позволяет обеспечить правильный тепловой режим системы плавного пуска электродвигателя , после выхода двигателя на штатные рабочие обороты, предотвращая его перегрев.

Существующие на сегодняшний день устройства плавного пуска электродвигателей, помимо приведённых выше свойств, рассчитаны на их совместную работу с различными контроллерами и системами автоматизации. Имеют возможность включения по команде оператора или глобальной системы управления. При таких обстоятельствах, в момент включения нагрузок, возможно появление помех, могущих привести к сбоям в работе автоматики, а следовательно, стоит озаботиться системами защиты. Использование схем плавного пуска, способно значительно уменьшить их влияние.

Плавный пуск своими руками

Большинство перечисленных выше систем фактически неприменимы в бытовых условиях. В первую очередь по той причине, что дома мы крайне редко используем трехфазные асинхронные двигатели. Зато коллекторных однофазных моторов - хоть отбавляй.

Существует немало схем устройства плавного запуска двигателей. Выбор конкретной зависит исключительно от вас, но в принципе, имея определённые знания радиотехники, умелые руки и желание, вполне можно собрать приличный самодельный пускатель , который продлит жизнь вашего электроинструмента и бытовой техники на долгие годы.

Устройство плавного пуска электродвигателя (сокращенно УПП) – это механизм, используемый для сдерживания роста пусковых характеристик. Он делает мягкими процессы запуска и остановки мотора, защищая его от перегрева и рывков, увеличивает срок эксплуатации. Применяется только для асинхронных двигателей.

При пуске двигателя в ход напрямую в одно мгновение крутящий момент достигает 150-200% от номинального значения. В это же время образуются пусковые токи, которые превышают номинальный в 5, а то и больше раз. Повышенные во время запуска мотора характеристики становится причиной проблем:

  • Повреждение изоляции обмоток и прекращение работы вследствие перегрева.
  • Выход из строя кинематической цепи провода из-за обрыва транспортерных лент, механических рывков или гидравлических ударов.
  • Тяжелый пуск, препятствующий его завершению.

Именно эти проблемы вызывают у электрического двигателя необходимость в устройстве плавного пуска. Благодаря ему мотор разгоняется плавно, без рывков и ударов. Пусковые токи снижаются. Поэтому удовлетворительное состояние изоляции будет держаться еще долго.

А как понять, что пуск тяжелый, и двигатель нужно оборудовать УПП? Для этого познакомьтесь с описанием трех случаев этого явления:

  1. Пуск слишком тяжелый для используемого источника питания . От сети нужен ток, который она может выработать только при «работе на износ» или не может выдать такое значение вообще. При попытке запуска на входе системы вырубаются автоматы, лампочки отключаются. Некоторые контакторы и реле переключения отключаются, а генератор питания прекращает работу. В этом случае УПП поможет, если питающая сеть сможет обеспечить 250% от номинального значения тока вместо 500-800%, которые были ей не под силу. Если же сеть не даст даже 250%, то смысла в установке устройства плавного пуска нет.
  2. Двигатель не запускается напрямую (не начинает крутиться или не разгоняется до нужной скорости, вызывая срабатывание защитной системы) . УПП не поможет, но можно попробовать исправить ситуацию с помощью преобразователя частоты.
  3. Запуск отличный, но на входе отключается автомат еще до того, как устанавливается номинальная частота . УПП может помочь, но не обязательно. Чем ближе частота вращения к номинальному значению в момент срабатывания автомата, тем больше шансов на успех.

Продвинутые устройства плавного пуска для асинхронных двигателей выполняют дополнительные функции:

  • Защита от короткого замыкания при пуске в ход;
  • Предотвращение обрыва фазы;
  • Исключение повторного незапланированного включения;
  • Защиты от превышения номинальных нагрузок.

Использовать такие устройства можно не только для смягчения запуска, но и для плавной остановки мотора. График ниже показывается зависимость скорости вращения двигателя от времени при прямом пуске и с использованием стартсофтера (второе название УПП).

Дополнительный бонус обладателям УПП: можно будет подобрать менее мощный источник бесперебойного питания, если в нем есть необходимость.

Принцип действия устройства плавного пуска

Стартсофтеры бывают:

  • Механические;
  • Электрические.

Рассмотрим принцип действия каждого из видов УПП.

Механическое регулирование пусковых характеристик

Самый простой способ сделать запуск электродвигателя плавным – принудительно сдерживать нарастающую скорость вращения. Для этого можно использовать устройства, механически регулируя вращение вала. Сюда относят тормозные колодки, противовесы с дробью, блокираторы магнитного действия и жидкостные муфты.

В каждом случае принцип действия свой. Однако представить, что происходит при механическом сдерживании скорости, можно на примере вращающегося диска: попробуйте коснуться его предметом. Между ним и диском образуется сила трения, которая будет направлена в противоположную сторону относительно вращения. Это значит, что диску понадобится больше времени для разгона до установленного значения. Скорость при этом будет расти плавно.

Электрические устройства для плавного пуска электродвигателей

Принцип действия электрических УПП заключается в ограничении подаваемого мотору напряжения с помощью параллельно соединенных тиристоров, как показано на рисунке ниже.

Чтобы лучше понять, как работает стартсофтер, нужно подробнее изучить запуск. Теоретически это процесс преобразования энергии из электрической в кинетическую. При этом сопротивление двигателя от малого значения, характерного для не вращающегося двигателя, увеличивается до большого, когда уже достигнута номинальная скорость. И по закону Ома(I=U/R) в начальный момент ток максимален.

Формула же энергии имеет вид: E=P*t=U*I*t. А поскольку в начале запуска ток максимален, то энергия должна передаваться очень быстро. Если же своими руками подключить электродвигатель к сети через УПП, то на входе в устройство будет работать вторая формула. Энергия будет подаваться очень быстро, но выходить будет медленно. Это достигается путем ограничения напряжения, контролирующего рост пускового тока. А поскольку в обеих формулах ток имеет одинаковую величину, видно, что чем меньше сила тока, тем больше времени потребуется на разгон. Но разгон при этом будет плавный.

Важно! Несмотря на необходимость в снижении пусковых токов, устанавливать их на слишком низких значениях нельзя. Иначе двигатель не сможет разогнаться. Обычно достаточно снизить ток до 250% от номинального (при прямом пуске он составляет 500-800%).

Управление электрическими стартсофтерами

Различают два вида электрических устройств, смягчающих пусковой процесс:

  • С амплитудным управлением;
  • С фазовым управлением.

Работа амплитудного УПП базируется на постепенном увеличении напряжения на клеммах мотора до максимальной величины. Такие устройства помогают запускать электродвигатели в холостом режиме или с небольшой нагрузкой.

Фазовые стартсофтеры регулируют частотные характеристики фазного тока без снижения напряжения. Это позволяет сохранить высокую мощность мотора, запускать который можно даже с большой нагрузкой. Установить плавное нарастание вращательной частоты можно даже в рабочем режиме. Это важная функция, благодаря которой можно менять скорость вала, не теряя мощность.

Оборудовать электродвигатель устройством плавного пуска или нет – ваше личное дело, если только он не завершает работу на полпути до разгона. Но имейте в виду, что за рубежом запрещено пускать в ход моторы мощностью более 15000 Ватт без стартсофтера. Попытка сэкономить на УПП может привести к преждевременному износу механизма. Если уж не хочется сильно тратиться, то просто установите устройство своими руками, но приобретите его обязательно.